GENETICA MICROBIANA (Cap. 7)

Genética microbiana
La ciencia de la genética defi ne y analiza la herencia o la constancia y cambio de una amplia gama de funciones fi siológicas que constituyen las propiedades del organismo. La unidad básica de la herencia es el gen, un segmento de ácido desoxirribonucleico (DNA) que codifi ca en su secuencia de nucleótidos información para propiedades fi siológicas específi cas. El método tradicional de la genética ha sido identifi car los genes con base en su contribución al fenotipo o las propiedades estructurales colectivas y fi siológicas de un organismo. Una propiedad fenotípica podría ser el color de los ojos en los seres humanos o la resistencia a los antibióticos en una bacteria.
ORGANIZACIÓN DE LOS GENES
 Estructura de DNA y RNA
La información genética en las bacterias se almacena como una secuencia de bases de DNA. En bacteriófagos y virus la información genética puede almacenarse como secuencias de ácido ribonucleico (RNA). La mayor parte de las moléculas de DNA son bicatenarias, con bases complementarias (A-T; G-C) unidas por enlaces de hidrógeno en el centro de la molécula. La orientación de las dos cadenas de DNA es antiparalela: una cadena tiene orientación química de 5′→ 3′ y su cadena complementaria sigue una dirección 3′→ 5′. La complementariedad de las bases permite que una cadena (cadena de plantilla) proporcione la información para la copia con la expresión de la información en la otra cadena (cadena de codificación).
El RNA más a menudo se encuentra en forma de una sola tira (monocatenario). La base uracilo (U) sustituye a la timina (T) en el DNA, de manera que las bases complementarias que determinan la estructura de RNA son A-U y C-G. La estructura general del RNA de una sola cadena depende el pareamiento entre las bases en las cadenas formadoras de asas, con el resultado de que la molécula de RNA de una sola cadena asume una estructura compacta capaz de expresar información genética contenida en el DNA.
Genoma de las células eucariotas
El genoma es la totalidad de información genética en un organismo. Casi todo el genoma de las células eucariotas es transportado en dos o más cromosomas lineales separados del citoplasma por medio de una membrana que limita el núcleo. Las células eucariotas diploides contienen dos homólogos (copias divergentes desde el punto de vista evolutivo) de cada cromosoma. Las mutaciones, o cambios genéticos, con frecuencia no pueden detectarse en las células diploides porque la contribución de una copia génica compensa los cambios en la función de su homólogo. Un gen que no logra su expresión fenotípica en presencia de su homólogo es un gen recesivo, en tanto que un gen que suprime los efectos de su homólogo es de tipo dominante.
Genoma de células procariotas
La mayor parte de genes procariotas son transportados en los cromosomas bacterianos. Con pocas excepciones, los genes bacterianos son haploides. Los datos de la secuencia genómica de más de 340 genomas microbianos han indicado que la mayor parte de los genomas procariotas (>90%) consiste en una sola molécula de DNA circular que contiene desde 580 kbp a más de 5 220 kbp de DNA (cuadro 7-1). Unas cuantas bacterias (p. ej., Brucella melitensis, Burkholderia pseudomallei y Vibrio cholerae) tienen genomas que consisten en dos moléculas de DNA circular. Muchas bacterias contienen genes adicionales en los plásmidos que varían en tamaño desde varios hasta 100 kbp.
Genoma viral
Los virus son capaces de sobrevivir, pero no de proliferar en ausencia de una célula hospedadora. La replicación del genoma viral depende de la energía metabólica y maquinaria de síntesis de macromoléculas del hospedador. Con frecuencia, esta forma de parasitismo genético da origen a la debilitación o muerte de la célula hospedadora. Por tanto, para la propagación exitosa de los virus se requiere: 1) una forma estable que permita que el virus sobreviva en ausencia de su hospedador; 2) un mecanismo para la invasión de la célula hospedadora; 3) información genética necesaria para la replicación de los componentes virales en el interior de la célula, y 4) información adicional que pueda ser necesaria para el empaquetamiento de los componentes virales y la liberación del virus resultante desde la célula hospedadora.
REPLICACIÓN
El DNA bicatenario se sintetiza por replicación semiconservadora. Conforme la doble cadena original se desenrolla, cada cadena sirve como plantilla (es decir, como la fuente de secuencia de información) para la replicación de DNA. Nuevas cadenas se sintetizan con la colocación de bases en orden complementario a las cadenas preexistentes. Cuando se ha completado la síntesis, cada molécula hija contiene una cadena original y una cadena de síntesis reciente.
DNA eucariota
 La replicación de DNA eucariota inicia en varios puntos de crecimiento a lo largo del cromosoma lineal. La replicación precisa de los extremos de los cromosomas lineales requiere actividades enzimáticas diferentes de las que en condiciones normales se asocian con la replicación de DNA. Estas actividades pueden incluir telómeros, secuencias especializadas de DNA (transportadas en los extremos de los cromosomas eucariotas) que parecen estar relacionadas con replicación precisa de los extremos cromosómicos. Las células eucariotas han evolucionado a una maquinaria especializada, denominada huso, que desplaza los cromosomas hijos hacia un núcleo separado, recién formado mediante el proceso de mitosis. La división más amplia del núcleo por medio de miosis divide a la mitad el número de cromosomas de las células diploides para dar origen a células haploides.
DNA bacteriano
 Las bacterias carecen de estructuras complejas relacionadas con la separación de los cromosomas que ocurre en las células eucariotas en un núcleo hijo diferente. La replicación de DNA bacteriano inicia en un punto y se desplaza en ambas direcciones (replicación bidireccional). En el proceso, las dos cadenas viejas de DNA se separan y se utilizan como plantilla para la síntesis de nuevas cadenas (replicación semiconservadora). La estructura donde dos cadenas se separan y ocurre la nueva síntesis se conoce como horquilla de replicación. La replicación del cromosoma bacteriano es un proceso estrechamente controlado; el número de cada cromosoma (cuando hay más de uno) por célula en desarrollo disminuye entre uno y cuatro. Algunos plásmidos bacterianos pueden tener hasta 30 copias de una célula bacteriana y las mutaciones causan un menor control de la replicación de plásmidos, lo que puede dar origen a un número incluso mayor de copias. La replicación de DNA bacteriano circular bicatenario inicia en el locus ori e implica interacciones con varias proteínas. En el caso de E. coli, la replicación cromosómica termina en una región denominada ter. Los sitios de origen (ori) y de terminación (ter) para la replicación se ubican en puntos opuestos en el DNA circular del cromosoma.
Transposones
Los transposones no portan la información genética necesaria para acoplar su propia replicación a la división celular y por tanto su propagación depende de su integración física con el replicón bacteriano. La especifi idad de la secuencia en el sitio de inserción por lo general es baja, de forma que los transposones a menudo parecen insertarse en un patrón aleatorio, pero tienden a favorecer regiones codificadas por tRNA.
TRANSFERENCIA DE DNA
 Puede suponerse que la naturaleza haploide del genoma bacteriano limita la plasticidad genómica de una bacteria. Sin embargo, la distribución ubicua de diversas bacterias en el medio ambiente proporciona un amplio acervo genético que contribuye a su notable diversidad genética a través de mecanismos de intercambio genético. El intercambio genético bacteriano está tipifi cado por la transferencia de fragmentos relativamente pequeños de genoma donador a una célula receptora, seguida de su recombinación genética. La recombinación genética bacteriana es muy diferente a la fusión de los gametos observadas en las células eucariotas; demanda que este DNA donador se replique en el organismo recombinante. La replicación puede lograrse a través de la integración del DNA donador en un cromosoma del receptor o mediante el establecimiento de DNA donador como un replicón independiente.
Mecanismos de recombinación
El DNA donador que no porta información necesaria para su propia replicación debe combinarse con el DNA del receptor a fi n de establecerse en la cepa receptora. La recombinación puede ser homóloga, una consecuencia de la similitud estrecha en las secuencias del DNA donador y receptor, o no homóloga, lo que da origen a una recombinación catalizada por enzimas entre secuencias diferentes de DNA. La recombinación homóloga casi siempre implica el intercambio entre genes que comparten ancestros comunes. El proceso requiere un grupo de genes designados como rec y las disfunciones en estos genes dan origen a bacterias que pueden mantener genes estrechamente homólogos en ausencia de recombinación. La recombinación no homóloga depende de enzimas codificadas por el DNA integrado y se ejemplifica con mayor claridad por la inserción de DNA en un receptor para formar una copia de un transposón donador.
Mecanismos de transferencia génica
La composición del DNA de los microorganismos puede ser notablemente fl uida. El DNA puede transferirse de un organismo a otro, y dicho DNA puede incorporarse de manera estable en el receptor, modifi cando de manera permanente su composición genética. Este proceso se denomina transferencia génica lateral u horizontal para diferenciarla de la herencia proveniente de genes paternos, un proceso conocido como herencia vertical. Los tres mecanismos amplios que median el desplazamiento efi ciente del DNA entre las células son: conjugación, transducción y transformación.
MUTACIÓN Y REORDENACIÓN GENÉTICA
 Mutaciones espontáneas
Las mutaciones son cambios en las secuencias de DNA. Las mutaciones espontáneas para un gen dado en un entorno silvestre por lo general ocurren con una frecuencia de 10−6 a 10−8 en una población derivada de una sola bacteria (lo que depende de especies bacterianas y de las condiciones utilizadas para identifi car la mutación). Las mutaciones incluyen sustituciones de bases, deleciones, inserciones y reordenamientos. Muchas sustituciones de base escapan a la detección al nivel fenotípico porque no alteran de manera signifi cativa la función de los productos génicos. Por ejemplo, las mutaciones de aminoácido que resultan en la sustitución de un aminoácido por otro pueden tener un efecto fenotípico perceptible. Las mutaciones interruptoras terminan la síntesis de proteínas para dar origen a proteínas truncadas en el sitio de mutación. Los productos génicos de las mutaciones interruptoras suelen ser inactivos.
Mutágenos
 La frecuencia de mutaciones se incrementa en gran medida por la exposición de las células a los mutágenos. La luz ultravioleta (UV) es un mutágeno físico que daña el DNA al unir bases cercanas de timina para formar dímeros. Los mutágenos químicos pueden actuar al alterar la estructura física o química del DNA. Los compuestos químicos reactivos alteran la estructura de las bases en el DNA.
En términos generales, el efecto directo de los mutágenos químicos o físicos es el daño al DNA. La mutación resultante se introduce por un proceso de replicación y escape de la reparación por las enzimas antes descritas. Las mutaciones que modifi can la actividad de replicación o las enzimas de reparación pueden hacer más susceptibles a las bacterias a los mutágenos biológicos y se conocen como cepas mutantes.
Reversión y supresión
 La recuperación de la actividad perdida como consecuencia de una mutación, lo que se conoce como reversión fenotípica, puede o no ocasionar el restablecimiento de la secuencia original de DNA, como sería obligado para la reversión genotípica.
EXPRESIÓN GÉNICA
La notable separación evolutiva de los genomas eucariota y procariota se ilustra al comparar sus mecanismos de expresión génica, los cuales comparten sólo un pequeño grupo de propiedades. En ambos grupos, la información genética se codifi ca en el DNA, se transcribe en el mRNA y se traduce en los ribosomas por medio de tRNA para dar origen a la formación de proteínas. Los codones del triplete de nucleótidos se utilizan en la traducción y por lo general son compartidos; muchas enzimas relacionadas con síntesis macromolecular en los dos grupos biológicos tienen propiedades similares. El mecanismo por el cual la secuencia de nucleótidos en un gen determina la secuencia de los aminoácidos en una proteína es muy similar en las células procariotas y eucariotas y consiste en lo siguiente:
1)      La polimerasa de RNA forma una cadena de polirribonucleótidos, conocida como “RNA mensajero” (mRNA), utilizando DNA como plantilla; este proceso se denomina transcripción.
2)      Ocurre activación enzimática de los aminoácidos con transferencia a moléculas adaptadoras específi cas de RNA, conocidas como “RNA de transferencia” (tRNA).
3)      El mRNA y tRNA se encuentran juntos en la superfi cie del ribosoma. Conforme cada tRNA encuentra su triplete de nucleótidos complementarios en el mRNA, el aminoácido que transporta se coloca en la cadena peptídica con el aminoácido de la molécula de tRNA precedente.
IDENTIFICACIÓN DEL DNA CLONADO
Mapa de restricción
Un mapa de restricción se construye en forma muy similar a un rompecabezas a partir de fragmentos producidos por digestión simple, los cuales se preparan con enzimas de restricción individuales y con procesos de doble digestión, en los que se forman pares de enzimas de restricción. Los mapas de restricción también son el paso inicial hacia la secuenciación de DNA porque identifi can fragmentos que proporcionarán subclonas (fragmentos relativamente pequeños de DNA) que se someten a un análisis más riguroso, que puede incluir la secuenciación del DNA.

Secuenciación
 La secuenciación de DNA muestra la estructura génica y permite que los investigadores deduzcan la estructura de los productos génicos. A su vez, esta información hace posible manipular los genes en orden para comprender o alterar su función. Además, el análisis de secuencias de DNA revela regiones reguladoras que controlan la expresión génica y “puntos calientes” genéticos que son en particular susceptibles a la mutación.
MUTAGÉNESIS DIRIGIDA AL SITIO
La síntesis química de oligonucleótidos permite a los investigadores realizar una introducción controlada de sustituciones de bases en la secuencia de DNA. La sustitución especifi cada puede utilizarse para explorar los efectos de una mutación prediseñada sobre la expresión génica, con el fi n de examinar la contribución de un aminoácido sustituido para una función proteínica o (con base en la información previa con respecto a los residuos esenciales para su función) a fi n de inactivar un gen.
ANÁLISIS CON DNA CLONADO: SONDAS DE HIBRIDACIÓN
 Las sondas de hibridación (transferencia de Southern, fi g. 3-4) se utilizan de manera habitual para la clonación de DNA. La secuencia de aminoácidos de una proteína puede utilizarse para deducir la secuencia de DNA por medio de la cual puede construirse una sonda y emplearse para detectar colonias bacterianas que contengan el gen clonado. El DNA complementario (cDNA) codifi cado por mRNA puede utilizarse para detectar el gen que codifi ca dicho mRNA. La hibridación de DNA a RNA por el método de membrana de Northern puede proporcionar información cuantitativa con respecto a la síntesis de RNA. Las secuencias específi cas de DNA en fragmentos de restricción separados en gel pueden revelarse por medio del método de transferencia de Southern, un método que utiliza la hibridación de DNA a DNA. Estos métodos pueden utilizarse para detectar superposición de fragmentos de restricción. La clonación de estos fragmentos hace posible aislar las regiones que rodean al DNA por una técnica conocida como deslizamiento cromosómico. Otra técnica de detección empleada con frecuencia es la transferencia de tipo Western , donde se utilizan anticuerpos para detectar genes clonados mediante la unión con sus productos proteínicos.
MANIPULACIÓN DEL DNA CLONADO
 Las técnicas de ingeniería genética permiten la separación y expresión completamente independiente de genes relacionados con los patógenos. Las vacunas preparadas con genes creados por ingeniería genética permiten medidas de seguridad que no era posible lograr con anterioridad. Por ejemplo, puede prepararse una vacuna contra una proteína de la cubierta viral que fue producida en ausencia de cualquier gen relacionado con las funciones de replicación viral; la inoculación con tales vacunas no implica el riesgo de introducir un virus funcional. Las difi cultades potenciales en el desarrollo de tales vacunas radica en la facilidad con la cual las mutaciones virales pueden producir variantes genéticas que no son reconocidas por el sistema inmunitario de defensa de un individuo vacunado. Por último, las vacunas actuales (y en el futuro) contienen una amplia gama de proteínas que anticipan la respuesta genética del patógeno.
Cepas recombinantes en el medio ambiente
 Los avances científi cos importantes han desencadenado en ocasiones reacciones públicas adversas, de forma que es prudente considerar las consecuencias potenciales de la ingeniería genética. Un tema de preocupación más inmediata es conocer si los patógenos han sufrido relativamente pocas modifi caciones genéticas. Éstas deben ser investigadas en laboratorios diseñados especialmente para controlar a los microorganismos. La necesidad de contención disminuye después que los genes para las funciones específi cas, como cubiertas proteínicas, son separados de los genes relacionados con la replicación o toxicidad de un patógeno. Sobre todo, deben observarse las precauciones estándar relacionadas con laboratorios de microbiología, principalmente porque fomentan hábitos que son de utilidad si un patógeno potencial penetra al laboratorio.

Comentarios

Entradas populares de este blog

Microflora normal del cuerpo humano

Desarrollo supervivencia y muerte de los microorganismo (Cap. 4)

CLASIFICACION DE LAS BACTERIAS